Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws

The aim of this work is to solve hyperbolic conservation laws by means of a finite volume method for both spatial and time discretization. We extend the ideas developed in [X.-D. Liu and S. Osher, SIAM J. Numer. Anal., 33 (1996), pp. 760–779; X.-D. Liu and E. Tadmor, Numer. Math., 79 (1998), pp. 397–425] to fourth-order upwind and central schemes. In order to do this, once we know the cell-aver...

متن کامل

High-order central-upwind schemes for hyperbolic conservation laws

We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [A. Kurganov, S. Noelle and G. Petrova, SIAM J. Sci. Comput., 23 (2001), pp. 707–740]. Similarly to the staggered central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality, and robustness. At the sam...

متن کامل

Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws

We construct, analyze, and implement a new nonoscillatory high-resolution scheme for two-dimensional hyperbolic conservation laws. The scheme is a predictor-corrector method which consists of two steps: starting with given cell averages, we first predict pointvalues which are based on nonoscillatory piecewise-linear reconstructions from the given cell averages; at the second corrector step, we ...

متن کامل

Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws

We discover that the choice of a piecewise polynomial reconstruction is crucial in computing solutions of nonconvex hyperbolic (systems of) conservation laws. Using semi-discrete central-upwind schemes we illustrate that the obtained numerical approximations may fail to converge to the unique entropy solution or the convergence may be so slow that achieving a proper resolution would require the...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2005

ISSN: 0036-1429,1095-7170

DOI: 10.1137/s0036142903437106